Orcad source of Electrical Schematic v0.6 published and other news

Finally we have published on our gitlab repository the Orcad source file with the latest version (v0.6) of the Electrical Schematics.

This file is at base of the PCB Design which is currently being worked on using Mentor Xpedition. The previous version of the schematics required some updates in order to accommodate minor changes to match the Slimbook chassis internal spaces. In addition, the schematics are now compatible with the I/O expansion board and the position of the external ports found on the “Elipse” chassis model, that was kindly provided by Slimbook.

After achieving the goal of Phase 1A (thank you all!!), we have just started Phase 1B of the donation campaign targeting the “Fast SI bus simulations”, in other words, an in-depth analysis of the integrity of signals of the PCB that came out from the previous campaign.

After discussing with the engineers currently working on the PCB, we were told that publishing an incomplete and potentially buggy PCB does not have much sense, as there might be major problems that will be solved after carrying out the SI bus simulations. At the end of these long discussions, we agreed on publishing the PCB only after reaching the end of Phase 1B, when all checks will be done.

At this point we cannot fix a deadline for publishing the PCB, as the end of the work on the PCB largely depends on when we will reach the goal of Phase 1B donation campaign and when the SI simulation will help solve all electrical problems that may come up.

The tentative deadline for Phase1B is 16th October so there are two weeks left to donate the remaining 4000 euros (around 4700 USD). If we will reach the goal, the PCB with SI bus simulation should be ready by the end of November .

Open Source Summit + Embedded Linux Conference Europe 27 Oct 2020

Continue reading

Signal Integrity Analysis of the PCB Design

On the 8th of September 2020 we have reached the previous goal targeting to collect the needed donations to complete the design our Open Hardware PCB (Printed circuit board), a big thanks to all supporters!

In the last 9 days, we received more than 2000 euros.
It allowed the campaign to reach its goal 7 days prior to its deadline, wonderful! Thank you all!

Gerd Altmann from Pixabay

This new campaign (Phase 1B) aims at the “Fast SI bus simulations”, in other words, it will pay for an in-depth analysis of the integrity of signals of the PCB that came out from the previous campaign. We have started the collection of donations right after reaching the 100% of the previous campaign.

The PCB Design , designed with Mentor Xpedition that came out from the previous campaign will be published here soon, a first public draft should be ready by the end of September.

After the in-depth analysis of the integrity of signals of the PCB will be performed, thanks to the current Donation Campaign, an updated version of the PCB will be published.

Our Speak at OpenPOWER Summit NA 15 Sept 2020

On 15th September at OpenPOWER Summit NA, there will be many interesting speaks and projects, our speak will be at 5:35pm ( Europe/Rome Time Zone).

Around 6 years back, we started as a group of FOSS, PowerPC and Open Hardware enthusiasts, with beginning to work on PowerPC Notebook project which was designed around GNU/Linux using Open Hardware. We had very limited funding with limited skills to work. But our enthusiasm and motivation led us to reach fabrication stage for the motherboard. Finally this year we could successfully design its PCB with the help of collaborators and limited funding from donors. There were many challenges faced in this process. Since PowerPC processors have been around for more than 2 decades, but the current implementation on Notebook was difficult to take in the market. Coming to the performance in Big Endian mode is maximized in this with many software need to be patched. In future we plan to upgrade our PCB design to the more recent packaging technology for the processor. Also, with increasing collaborators, it would be possible to design more smaller and cheaper PowerPC board.