fine tuning firmware for u-boot and develop Radeon driver for latest u-boot version

It’s a quite some time has passed since the beginning of July when we posted about the start-up ramp that carefully calibrated, programming a complex integrated circuit with some logic (i.e. ramps, voltage thresholds, internal ways of making the PWM regulator work, and so on) and when the Complex Programmable Logic Device (CPLD) (Lattice LCMXO640C-3TN100C FPGA) was programmed for the very first time in order to manage all external peripherals connected to it.

In July we figured out  that a Jtag Debugger was very needed to debug our Powerboard Tyche, the only way to solve the causes of not seeing any U-Boot output. We were able to buy such a debugger thanks to the donations we are collecting with the  current campaign, we thank all donors for their support. 

The debugger is  the NXP CWH-CTP-BASE-HE Jtag Debugger + NXP CWH-CTP-COP-YE “Probe Tip, Removable, For Power Architecture Processors, JTAG to CodeWarrior TAP Base Unit” and, together with one of the three prototypes, we shipped it in August to Max Tretene that kindly accepted to be directly involved in the debug process of the motherboard. Soon, the task proved to be quite challenging, so after an internal discussion, we decided to  offer Max a reimbursement for all the time he was spending on the job, a reimbursement that was made possible to the donations we are receiving with the current campaign.

Dealing with hardware debugging is quite a hard and tedious job, and it was not easy to see something useful on the Jtag Debugger connected to the prototype motherboard. An additional adapter was required to attach the debugger because of the difference in the pin dimensions (2 vs 2.5). Max found it quite useful using the jtag debugger with our NXP T2080-RDB Devkit that was also shipped to him, because it allowed to test the procedure on a working platform and helped understanding the right configurations of the switches to boot up the board.

The two switches on Powerboard Tyche, other related info on Page 5 of our schematics

As our PowerBoard Tyche have not the third switch like the NXP T2080-RDB Devkit a few additional resistors were required to setup correctly the board to be able to switch on the Code Warrior debug connected to our Powerboard Tyche. Not just that, an additional update to the CPLD chip was required to setup the debugging system correctly. Finally, on the 16 of October, Max was able to see some sign of life from the NXP T2080 CPU on SRAM and on NAND Memory, as you can see in the screenshots below. These days we are working on NOR programming, waiting in the meantime for a CPLD update from the hardware designer. The NOR programming is needed to have access to the DDR and then start U-Boot.

SRAM programming – CodeWarrior® Development Suites for Networked Applications attached to Powerboard Tyche
NAND Programming – CodeWarrior® Development Suites for Networked Applications attached to Powerboard Tyche

Some possible changes to the hardware design

All these hardware tests were useful for planning some changes to the hardware design: few missing resistors for enabling the u-boot switches must be added and we need to move one chip because it does not fit quite right in the eclipse chassis.

The recent worldwide electronic components shortages we faced when making  the prototype Powerboard Tyche boards caused an unexpected -and incredible-  increase of the prices. More recently chip prices seem to be coming back to more reasonable prices, with the exception of the Marvell Sata3 controller.

As a consequence, we are evaluating the removal of the Marvell Sata3 controller to both free very-much needed space space and save some costs because at the moment such a chip costs around 90 euros per piece, quite a lot.

In fact, nowadays most SSD are available at a very good price with the M.2 form factor, so a Sata3 connection is not that essential anymore. People in a desperate need for a Sata connection could use the two Sata2 controllers inside the T2080 CPU.

Below we list the availability and prices of 

  • Marvell Sata 3 controller 88SE9235A1-NAA2C000, in 2022 we had payed around 130 euro per piece + VAT, 1 per PCB, total 3 pieces. NOW Win Source  In Stock, 3450 pieces 87 euro
  • TPS544B20RVFT 4.5-V to 18-V, 20-A synchronous SWIFT buck converter with PMBus programmability and monitoring in 2022 we had payed around 550 euro per piece + VAT, 1 per PCB, total 3 pieces NOW: TI Website: 2000 pieces around $8 per piece
  • 6-port, 12-lane, PCIe 2.0 Packet Switch PI7C9X2G612GP – Diodes in 2022 we had payed it around 250 euro per piece + VAT, 1 per PCB, total 3 pieces NOW Digikey 121 pieces 25 euro per piece
  • Surge Suppressors 100V OV, UV, OC and Reverse Supply Protection Controller with -50mV Reverse Threshold LTC4368IDD-1#PBF in 2022 we had payed it  around 100 euro per piece + VAT, 1 per PCB, total 3 pieces NOW Mouser 2.191  Unit Price around 4-5 Euro

Compile and test of an updated version of U-Boot

We hired Bas Vermeulen to obtain a running version of the most recent version of U-Boot on both the NXP T2080-RDB Devkit and on the Powerboard Tyche prototype. In addition, we asked him to develop an AMD/ATI Radeon driver for U-Boot, a work that he carried out last August. The results of his effort is publicly available on our GitLab U-Boot repository.

Unfortunately, until our Powerboard Tyche will not be able to reach  the U-Boot startup process, Bas will be limited in developing and testing U-Boot on the NXP T2080-RDB Devkit. For that reason, Max Tretene is actively supporting Bas in testing the U-Boot binaries generated by Bas on the Devkit.

As you can see on our U-Boot gitlab repository, Bas was hard at work compiling very recent versions of U-Boot during last August. Unfortunately,  because of causes of force majeure, Bas was unable to continue working during September, but he should be back on track the very next days.

Below a short list of the main issues Bas is working on:

We finally thanks again for your support and donations that allow us to finance all these activities, greatly facilitating reaching our goal in a reasonable amount of time: a very good quality PowerPC based notebook release as open hardware.

We still do not have yet a formal quotation of the design of the heat pipes for cooling down both the CPU and the MXM video card. Informally, we estimated approximately 10000 euros. At the moment we are very much focused in making the Powerboard Tyche prototypes working, at least up to the point of being able to launch U-Boot.

  1. Development of software components and heat pipes for the Powerboard Tyche

    €2,220.05 donated of €16,000.00 goal

CE mark certification financed! New campaign for the software part and heat pipes

Once again we want to thank you all for the great support and great enthusiasm you demonstrated during the CE mark donation campaign. We ended the campaign with a total amount of 12500€ (https://en.wikipedia.org/wiki/CE_marking), this is a huge milestone for us all and we are so very grateful.

By financing the CE mark certification you have shown us that you believe in the project and our vision of creating a fully open hardware notebook motherboard based on the alternative PowerPC CPU architecture.

We closed the campaign with around € 4000 more than expected, and this extra money will cover some of the extra and unplanned costs we faced for the increased price of electronic components and the extra costs of the three MXM video cards (360 USD each).

The CE mark certification is a mandatory requirement for selling electronic products in the European Union. It ensures that our notebook motherboard meets the safety, health and environmental standards of the EU. Without it, ACube Systems would not be able to launch and sell our Notebook on the EU market. Getting the CE mark certification is not an easy nor a cheap process as it involves rigorous testing, documentation and quality controls.

Legacy Slimbook Eclipse cooling metal pipes to be redesigned

However, the CE certification process can be performed only when the product can be considered completely finished, and that means once the board works, the cooling metal pipes are in place and all is assembled into the selected slimbook eclipse chassis.

Current activities

The Tyche Motherboard has surpassed all the electrical checks, and now the the key activities being performed concentrate on the hardware initialization procedures.

The start-up ramp was carefully calibrated, programming a complex integrated circuit with some logic (i.e. ramps, voltage thresholds, internal ways of making the PWM regulator work, and so on).

The Complex Programmable Logic Device (CPLD) is a Lattice LCMXO640C-3TN100C FPGA is programmed to manage all external peripherals connected to it (see the block diagram and wiring diagram on page 15), manage the interrupts, data, boot reads, set resources according to the CPU and is able to reset all peripherals.

our Tyche motherboard under testing

Working on U-Boot

Currently, a small team of volunteers are working on U-Boot . We are decided to buy a JTAG debugger, a quite useful tool indeed that will make the hardware debugging much easier.

We learnt how to configure and build U-Boot, and we set up a cross-development PowerPC toolchain and the related Device Tree Blob that is used to describe the physical configuration of each hardware component available on the motherboard. You may keep an eye on our attempts by looking at our GitLab pages. We started by re-compiling our old U-Boot binary dating back to 2019, the one that we are currently using on our NXP T2080RDB devkit and also trying to compile a newer U-Boot version from a the DENX mainline vanilla branch without our patches. We are now kindly assisted by Max Tretene, the same guy working at ACube Systems that compiles U-Boot for their motherboards such as the Sam440 or the Sam460ex. Max is currently available to introduce hardware support to AMD/ATI Radeon graphics cards in U-Boot, (ndr.: he recently told us that his spare times is not enough so we are proposing him to work under payment) stay tuned for more in-depth posts about it. In the hope of speeding up the development, we provided Max Tretene with our NXP T2080RDB devkit in early June.

We want to thank the dedicated small group of volunteers and especially Max Tretene for their precious spare time spent in trying to configure and compile U-Boot, we very much appreciate their availability and effort, even if a successful result is yet to comes. In addition, we greatly appreciated the offer made by a professional engineer – not to be disclosed yet- that is ready to work for us on U-Boot for a very reasonable amount of money.

Launch of a new fundraising campaign

After quite some internal discussion, we finally decided to launch a new fundraising campaign aimed at support and speeding up multiple actions:

  1. Buy a JTAG Debugger
  2. Design of the heat pipes for cooling down both the CPU and the video card;
  3. Prototype of a heat pipe fitting our Slimbook chassis, a requirement to proceed to the CE certification process;
  4. Development of an AMD/ATI Radeon driver for U-Boot;
  5. Development of the device thee to fully exploit each hardware component of the board;
  6. Compile a custom  U-Boot binary from up-to-date DENX sources;
  7. Provide the entire toolchain for cross compiling U-Boot and the device tree for PowerPC;
  8. Provide the documentation detailing all the technical aspects of both U-Boot and the device tree so that anybody will be able to understand how to rebuild it from scratch and how to customize it.

In carrying out these actions, we will try our best to optimize both the support of the involved volunteers (any additional help is more than welcome!) and the contracted software engineer(s).

At the moment we only have a rough idea of the amount of required hours of paid work required to complete U-Boot and its closely related device tree. After some internal investigation, a reasonable rough estimate could be at least 100 hours, but it may take more to reach the goal.

We do not have yet a formal quotation of the design of the heat pipes for cooling down both the CPU and the MXM video card. During an informal discussion with electronic engineers that have experience in the design and production of these heat pipes, we estimated approximately 10000 euros.

To sum up, the title of next campaign is “Development of software components and heat pipes for the Powerboard Tyche” and its breakdown costs are the following:

  • Around 100 hours of work of a software engineer(s) for the customized U-Boot, the device tree and the AMD/ATI Radeon video driver: 5000 euros
  • JTAG debugger 1000 euro
  • design of the heat pipes and production of 3 of them for the three prototypes: 10000 euro

The estimated amount to collect with the next campaign is 16000 euros.

  1. Development of software components and heat pipes for the Powerboard Tyche

    €2,220.05 donated of €16,000.00 goal

We really hope that you will assist us once again during this final journey. We are that close to making it happen: a 64 bit, multi core, PowerPC based notebook fully open hardware with up to today’s standards devices and interfaces!

Prototypes testing results

Picture by PublicDomainPictures from Pixabay

The laptop prototypes testing is progressing great. We tested the primary power supply stage of the CPU, one the most power hungry components in the board, and it is being fine-tuned thanks to a programming apparatus. The chip in charge to power up the CPU NXP T2080 is the Texas Instruments TPS544B20RVFT (Switching Voltage Regulators 4.5-18V 20A SWIFT) as explained at page 37 in our electrical schematics.

The start-up ramp needs to be carefully calibrated, a complex integrated circuit with a some logic that needs to be programmed to make it work properly (i.e. ramps, voltage thresholds, internal ways of making the PWM regulator work, and so on).

The other power supplies are a half a dozen voltage regulators and are meant to power elements such as the PCIe, the RAM, the internal peripheral buses, the connected devices, the Non-Volatile Memory Express (NVMe) and the clock generators the are essential to make the board work properly. The Eclipse Legacy Battery was tested and is recharging properly.

The Complex Programmable Logic Device (CPLD) is a Lattice LCMXO640C-3TN100C FPGA and has to be programmed to manage all those external peripherals connected to it (see the block diagram and wiring diagram on page 15 ), manage interrupts, data, boot reads, set resources according to the CPU and reset all peripherals.

Powerboard Tyche, top side. The visible biggest gray chip is the CPU NXP T2080 Power Architecture CPU.

So far so good, the electronic design seems to work correctly, at the moment we are only fine-tuning each electronic component. If all checks continues like this, we might end all electronic debugging in the next few weeks and we can consider this very delicate phase successfully completed. After that, we plan to place the first code in the CPLD, and right after that we should be ready to load U-Boot, the first-stage and second-stage bootloader. We are trying to re-patch a recent version of U-Boot, quite some time has passed since we patched it to make it recognizing the graphic board we mounted on the PCIe port on the NXP T2080RDB board. Not just that, we must carefully customize the device tree to correctly map all peripherals available on the motherboard.

If for it concern the electronical components we can safely rely on the (paid) support of an expert engineer, for setting up U-Boot it’s up to us to make it work properly, and more importantly, to make it correctly recognize all peripherals, especially the SD card, the FLASH and, even more importantly, the two DDR3L RAM slots.

We would like to thank everyone for the continuous flow of donations, and please, continue to do so.

At the moment we still need funding to cover the extra costs we faced for the simply crazy prices we paid for the electronical components mounted on the prototypes motherboards and especially for getting our hands on two MXM graphic boards based on AMD chips.

For two MXM AMD E9174 video cards with 4GB RAM we have spent 780 dollars ( 360 each) and 185 euro of import Tax around 965 euro .Considering all chips, the cost of each prototype resulted 1200 euros higher than what was initially planned 4392 euros more (1200 x 3 + 22% VAT). So we need to collect around 5357 euro more than the goal of the last donation campaign.

Donations and professional for u-boot

In addition, after an initial round of experiments, we are still struggling to successfully customize U-Boot and to properly setup the device tree. Most of us already spent quite some time on the task during our spare time (remember, we are all volunteers with a proper day job and a personal life ;), so we are seriously evaluating to assign the job to a professional to get the job done in a reasonable amount of time, and to do that we need your financial support!

Prototypes ready, let’s proceed to test them.

Finally, the three prototypes are ready as you can clearly see from the pictures below.

The resulting cost of each prototype resulted in 1200 euros (without VAT) higher than what was initially planned due to the global shortages of electronic components that have skyrocketed prices of some important chips. So, more donations are needed to fund these 4392 euros more (1200 x 3 + 22% VAT).

Powerboard Tyche, bottom side.
Powerboard Tyche, top side. The visible biggest gray chip is the CPU NXP T2080 Power Architecture CPU.

Now the Hardware Tests stage has started, but prior to that we still need to solder the HDMI connector that has arrived too late to be included during the production phase.

Soon, our Open Hardware motherboard called “Powerboard Tyche” will be inserted in its notebook body chassis for starting the multiple hardware tests.
Below, you can see a picture of the old dummy PCB used for testing how to fit in the notebook.

Slimbook Eclipse Notebook
The external view of the Notebook body

The notebook specifications are the following:

  • CHASSIS: Slimbook Eclipse notebook case 15,6”
  • CPU: NXP T2080, e6500 64-bit Power Architecture with Altivec technology
    • 4 x e6500 dual-threaded cores, low-latency backside 2MB L2 cache, 16GFLOPS x core
  • RAM: 2 x DDR3L SO-DIMM slots
  • VIDEO: MXM3 Radeon HD Video Card (removable)
  • AUDIO: C-Media 8828 sound chip, audio IN and audio OUT jacks
  • USB: 3.0 and 2.0 ports
  • STORAGE:
  • NETWORK:
    • 1 x Gigabit ethernet RJ-45 connector
    • WiFi connectivity
    • Bluetooth connectivity
  • POWER: on-board battery charger and power-management

Powerboard Tyche PCB source

This work was made using Mentor Expedition and it is ready and uploaded into our repository with all reported issues fixed, including issue number 5, the last one corrected . Thanks to our collaborators we are able to export this work using Altium form so the next days we will publish it and we will try to convert it to Open Source Kicad format ( and probably loosing something in the conversion process) . In our older post we have give more details regarding the PCB sources.

Prototypes in production despite heavy chip shortages

We were supposed to start the production of the laptop prototypes at the end of last September but we stumble upon skyrocketing prices, especially regarding four fundamental chips. We had no other choice but to pay those incredible much higher prices, the only alternative would have been to stop all our activities.

We are glad to inform you that this week the prototypes production has started and – finger crossed – we are expecting them to be ready in the beginning of November. The following are the four fundamental chips and their actual cost:

  • Marvell Sata 3 controller 88SE9235A1-NAA2C000, around 130 euro per piece + VAT, 1 per PCB, total 3 pieces
  • TPS544B20RVFT 4.5-V to 18-V, 20-A synchronous SWIFT™ buck converter with PMBus programmability and monitoring around 550 euro per piece + VAT, 1 per PCB, total 3 pieces
  • 6-port, 12-lane, PCIe 2.0 Packet Switch PI7C9X2G612GP – Diodes around 250 euro per piece + VAT, 1 per PCB, total 3 pieces
  • Surge Suppressors 100V OV, UV, OC and Reverse Supply Protection Controller with -50mV Reverse Threshold LTC4368IDD-1#PBF around 100 euro per piece + VAT, 1 per PCB, total 3 pieces

The HDMI connectors (2041481-1) were completely impossible to find on the market in a reasonable amount of time. After long research, we could finally solve the problem thanks once again to the kind support of Slimbook, they will soon send us three connectors, one for each prototype.

Considering all chips, the cost of each prototype resulted 1200 euros higher than what was initially planned, 3600 euros more ( + 22% VAT) considering all three prototypes currently in production. You may find more information about these three prototypes in the post of July 2022 and May 2022.

As already stated in our post back in July, we are still asking you to continue donating as to help us supporting the dramatic increase in the actual costs we personally anticipated to proceed with the production. You may continue use the current campaign to donate.

Our presence for October-November in Free Software and IT events

We have planned our next speech at the LinuxDay in Milan (Italy) on the 22nd of October.

We are at NXP Technology Days in Milano on 27th October with our exposition, we are very glad for this opportunity that NXP has given us.

We hope to first show at least one prototype at the SFScon – Free Software Conference – on the 11th of November in Bolzano (Italy) in the occasion of our next speech.

Ready for Prototypes production with reworked PCB design with all available components

Image by Dmitry Abramov from Pixabay

AMD MXM video cards in our hands!

As we have already published in July’s post, our AMD retailer informed us that the new MXM video cards will not be available. We have selected a manufacturer that still produce and sell affordable MXM AMD based video cards (Type A – size 82mm x 70mm) .

At the moment, AMD open source drivers are better than NVIDIA ones, so in our opinion it is the best option for GNU/Linux and the unique solution to support Amiga OS derivates. Then, even if it is easier to find NVIDIA MXM Video Cards ( Type A) we are still preferring to use AMD MXM video cards.

As a consequence, we have ordered and received two MXM AMD E9174 video cards with 4GB RAM, actually is the only option available as the 2GB version is not available anymore.

Main Features
AMD Embedded Radeon E9174
Supports DirectX 12, Vulkan, OpenGL 4.5, Open CL 2.0
MXM 3.0 Type A
Support for 5 outputs
128-bit width, 4GB, GDDR5 Memory

They are ready to be tested with our prototypes. We have spent 780 dollars ( 360 each) and 185 euro of import Tax. It was possible to buy them thanks to the last donations that surpassed the goal of the dedicated CE Certification donation campaign so, thanks again to all donors

Published Powerboard Tyche PCB reworked source

Finally, the reworked PCB design source of Powerboard Tyche with the updated available components is ready ( in older posts you can go more deep about “our” electronic components shortage issues). This work was made using Mentor Expedition and it is ready and uploaded into our repository with all reported issues fixed, including issue number 5, the last one corrected . Thanks to our collaborators we are able to export this work using Altium form so the next days we will publish it and we will try to convert it to Open Source Kicad format ( and probably loosing something in the conversion process) . In our older post we have give more details regarding the PCB sources.

Inside Output folder you can find many interesting files easy simple viewable like the “the plot separate sheet” CAM350/DFMSTREAM and the Motherboard Assembly TOP and BUTTOM.

As a conclusion now we have everything to produce and make the hardware tests in September.

Rework of the Powerboard Tyche schematics done and published

As you know, we were having troubles to find a few components in the market, not only because of their availability, but also due to the increased price. After extensive research, the designer replaced the unavailable components. Unfortunately, we were forced to buy a few components with a premium.

Changes:

from TCA6408ARGTR 8-bit translating 1.65- to 5.5-V I2C/SMBus I/O expander to  PCA9539 16-bit I2 C-bus and SMBus low power I/O port with interrupt ( Page 15 pdf schematics)

from TPS56637RPAR Buck Switching Regulator IC Positive Adjustable 0.6V 1 Output 6A 10-PowerVFQFN with RT6222DHGJ6F Buck Switching Regulator IC Positive Adjustable 0.6V 1 Output 2A SOT-23-6 Thin, TSOT-23-6 ( Page 38 pdf schematics)

We remain stuck with a few overpriced components:

  • Marvell Sata 3 controller  88SE9235A1-NAA2C000
  • TPS544B20RVFT 4.5-V to 18-V, 20-A synchronous SWIFT™ buck converter with PMBus programmability and monitoring

The designer of the PCB should complete the work within the next two weeks and after that we should start producing the prototypes. Meanwhile, we have published the new schematics including the new components in our repo in pdf format and with ORCAD source.

And lastly, our AMD retailer informed us that the new MXM video cards will not be available. There are other manufacturers producing MXM cards based on AMD GPUs, we are evaluating quotes from different producers.

We are still welcome more donations!

Even after completing the current goal, we are leaving the campaign open to help reaching our next milestone.

Our upcoming goals are:

  • to buy a few MXM Video cards for the prototypes. We need new quotes, because AMD has stopped selling MXM cards, so we are already in contact with other manufacturers, next days we order it.
  • to redesign the heat pipes, as they will differ from the original specifications of the Eclipse Notebook.

Only if needed:

  • pay some work on u-boot configuration

Worst case scenario:

  • make a new version of the prototype.
  • any other unforeseen challenges.

We will refine the scope of the upcoming donation campaign once we have a clearer view of the situation as it develops: production of the prototypes, hardware tests, CE certifications. Meanwhile, we will leave our current donation campaign opened.

Powerboard Tyche rework completed by June

Motherboard final name

In October 2020, we asked the community to join our forum and submit their suggestions to name our motherboard. The discussions were intense, and the suggestions were very diverse, covering everything betweeh mythology, fauna and flora, literature, music and technology.

We kept the pool running for a year, until we reached the threshold of 1000 votes. Check the final results here. After an inicial parsing of the suggestions by the core team, we realize that it’s incredibly difficult to name something. =)

Statue of Tyche, goddess of fortune At the stunning Archeology Museum in Istanbul, Turkey

Among the suggestions, we got Bellatrix (a star or a Harry Potter villain, depending on where you come from), Overture (a musical motif of energy and character), Phoenix (that could also become a mascot), and others…

After a few rounds of reminders, in the March 2022 Power Progress Community meeting we decided to mix the first name selected on the public vote and the third because the first and second alone were too generic, so the composed name of the board is POWERBOARD TYCHE.

The POWERBOARD name is self explanatory. Tyche is the Greek Goddess of Fortune, to whom good and bad events could be atributed. Initially, however, her role was to bring positive messages to people. Her Roman equivalent is Fortuna.

We look forward to seeing our POWERBOARD TYCHE powering our notebooks and other devices soon!

Encryption Software

Since 2018, we’ve been in contact with CEuniX.eu , who created the Post-Quantum-Cryptography library. Particularly, we’ve been in touch with Stiepan, a Free Software and PowerPC enthusiast, who is now Chief Executive Officer of the QRCrypto SA. They would love to see PowerPC running their Post-Quantum Encryption software. We want to see it running on our PowerPC Notebook.

In 2018, they made a donation for our Electrical Schematics Donation Campaign and now they want to help us again by supporting the last mile of Donation Campaigns.

We are very grateful for their commitment to our project

Rework of a part of the mobo and situation of the components

We were waiting for the two ordered MXM AMD video cards, but the distributor informed us that they were forcefully EOF ( End of Life) due to the end of GDDR5 production. Moreover, the merge of AMD and Xinlinx is delaying the production of the new video card with GDDR6.

As you know, we were having troubles to find a few components in the marked (listed below) not only because of their availability but also due to the increased price. After an extensive research, the designer was able to identify the replacement components.

Below, a detailed list of unavailable or extremly expensive parts that the designer is replacing with other readily-available components:

  • 1 per pcb Transistor: NPN; BSR17A bipolar; 40V; 0.2A; 0.35W; SOT23 – ON SEMICONDUCTOR > 3100% cost increase from 0,5 euro to 16,50 euro per piece
  • 4 per pcb Field Effect Transistor –NDC7002N MOSFET 2N-CH 50V 0.51A SSOT6 – ON SEMICONDUCTOR : >1100% cost increase from 0,50 euro to 6,5 euro per piece
  • 2 per pcb MOSFET N-CH 100V 60A PPAK SO-8 SiR870DP – Vishay Siliconix > 3250% cost increase from 1,53 euro to 50 Euro per piece
  • 1 per pcb Parallel NOR Flash Automotive Memory MT28EW01GABA1HJS-0AAT – MICRON > 3250% cost increase from 13 euro to 423 euro!!!
  • 1 per pcb IC EEPROM 256KBIT I2C 1MHZ 8SOIC AT24C256C-SSHL-B – Microchip Technology > 1000% cost increase from 0,29 euro to 2,5 euro
  • 1 per pcb 24-bit translating 1.65- to 5.5-V I2C/SMBus I/O expander TCA6424ARGJR – Texas Instruments Not Available
  • 1 per pcb 24 MHz XO (Standard) LVCMOS Oscillator ASFLMB-24.000MHZ-LC-T – Abracon LLC – Not Available
  • 1 per pcb I/O Controller Interface IC HI-PERFORM LW PWR SM FOOT USB 2.0 HUB USB2514-AEZCNot Available
  • 1 per pcb Two-Lane PCIe 2.0 to Four-Port 6 Gbps SATA I/O Controller 88SE9235 – MARVELL – 980 euro!!!!!!!
  • 1 per pcb 6-port, 12-lane, PCIe 2.0 Packet Switch PI7C9X2G612GP – Diodes – 700 euro!!!!
  • 1 per pcb Power Switch ICs FDC6331L – onsemi / Fairchild – >3300% cost increase from 1,25 to 41,6 euro
  • 1 per pcb Switching Voltage Regulators 4.5-18V 20A SWIFT TPS544B20RVFT – Texas Instruments – 90 Euro!!!
  • 6 per pcb Switching Voltage Regulators 4.5-V to 28-V, 6-A TPS56637RPAR – Texas Instruments – > 10000% cost increase from 3 euro to 344 euro per piece ( 6 piece = 2.064 euro!!!)

Previously missing in February, but now available again

  • 3 per pcb IRLML6346TRPBF – N-Channel 30 V 3.4A (Ta) 1.3W (Ta) – Infineon Technologies
  • 2 per pcb 403C11A24M00000 24 MHz ±10ppm Crystal 10pF 60 Ohms 4-SMD
  • 7 per pcb MOSFET – DMN3730U-7 N 750mA 30V POWER MOS – Diodes
  • 9 per pcb Trans MOSFET – SI4925DY P-CH 30V 5.3A 8-Pin SOIC – ON SEMICONDUCTOR

The designer is replacing these components with new ones available currently and having an affordable cost in the market. Consequently, there’s extensive rework of the electrical schematics and of the Printed Circuit Board design. The new PCB design should be ready in June 2022. In the meantime, the designer is ordering the new components. When we receive them, we should have everything needed to produce prototypes.

Our speech on LibrePlanet 2022

In March 2022, we attended the LibrePlanet 2022 and followed many interesting talks.

LibrePlanet 2022: “Living Liberation” was a resounding success. Participants socialized using our online conference space, LibreAdventure, and created beautiful things in Minetest. Stalwart and Supporter level attendees joined the LibrePlanet after-party with staff and board members, which was a blast. Both Saturday and Sunday featured a wide range of speakers covering how nearly every topic you can think of relates to one common concept: free software.

Our talk was titled “Why we feel it is a liberation experience to take part to the Open Hardware PowerPC Notebook project,” and was presented at the LibrePlanet 2022 by Roberto Innocenti.

This talk illustrate the reasons and motivations that made Open Hardware PowerPC Notebook undertake the challenge of designing a PowerPC based notebook from scratch — one that is fully compliant with the Open Hardware principles and based on GNU/Linux — and what we are learning from it.

Pre-certification and CE certification Campaign Launched

Thanks to our supporters we did it again!

Thanks to another significant donation made by Wiktor Glowack, the previous donation campaign to finance the Hardware Test reached its goal on the 27th of January.
Thank you very much, Wiktor!
We are very happy to have found such a generous contributor, his support will benefit the entire PowerPC and open computing community.
We will strive to do anything required to achieve the final goal: providing the community with the most powerful, fully Open Source, and production-ready PowerPC laptop motherboard.

As soon as the prototypes are ready, we will transfer the money collected from the campaign targeting the Hardware Tests to ACube Systems, the company we selected in this challenging journey to make a PowerPC notebook.

At the moment, we are on hold on the production of the three prototypes because of still missing electronic components. This is most unexpected as we thought we would be ready by now. However, we still have the plan to carry out the hardware tests immediately after production, and right after that, we will publish an updated version of the motherboard schematics on our GitLab repository.

The campaign we launch today has the goal to finance the pre-certification and CE certification, a compulsory requirement for any electronic product being sold within the European Economic Area. The CE marking means that the manufacturer or importer affirms the good’s conformity with European health, safety, and environmental protection standards (see Wikipedia).

The financial target of this new campaign is 12500 euros (around 14128 USD).

VICE v3.60, the C64 emulator, is available for PowerPC 64bit Big Endian

Thanks to our fellow member Roberto Guardato any user of the Debian Linux PowerPC 64 bit Big Endian may play Commodore 64 games using the recently released version 3.60 of the VICE emulator.

This is line with our commitment to maintain an updated version of VICE available for PPC64 BE from our repository at https://repo.powerprogress.org/

A screenshot of VICE running on a MacPro G6 under Debian Linux PPC64 Big Endian.